
The results for the second family of solutions are qualitatively analogous, except 
that for them there are several stable zones (Fig. 4) and the characteristic increments of 
the most dangerous perturbations are smaller by almost an order of magnitude than in the 
case of the first family of solutions. These data give an answer to the problem of why 
preferentially highly linear wave elevations (almost to the extent of soliton waves) are 
observed in the experiments, particularly as Re increases. 

NOTATION 

~, coefficient of kinematic viscosity; o, surface tension coefficient; g, acceleration 
of free fall; 0, liquid density; ~, wave number; ~, wavelength; c, phase velocity of waves; 
A I = hma x - hmin; We = a<h>/p<q> 2, Weber number; Re = <q>/9, Reynolds number; 
Fr = <q>2/g<h>2, Froude number; Real (a), real part of the number a; F i = (o/p)3/ 
gv 4, film number; A = 2.4 d/d$(q0/h 0) + z/h~; B= 2.4. (q0/h0) - c; p = 1.2 d/d$(q~/h~) + F + 
2zq0/h ~ + 3 d~h0/dE~; D = 1.2 (q~/h~); Vn_k+1+rN =.(A + i~ QB)n_k+1+rN+i=(k ~-l)Bn-k+l+rN; 
Wn_k+~+rN = (P + i~QD - 3i~3Qaho)n_k+1+rN - i~(k - I)(D - 9~2Q2ho)nlk+1+rN + (9i~3Q(K-I) 2 + 
3i~3(k-l)3hon-k+1+rN ,. 
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STABILITY OF THE PROCESS OF EXTRUSION OF A 

VISCOELASTIC MATERIAL FROM A CONICAL CHANNEL 

G. I. Burd~ and T. M. Burd~ UDC 532.5:532.135 

The stability of motion of a viscoelastic compressible medium in a conical 
channel with a small outlet orifice is investigated during the initial stage 
of extrusion~ 

The motion of viscoelastic media through conical channels is a process encountered in 
plastics production - solid-phase extrusion, fiber-forming, etc. In studies of these pro- 
cesses and their stability the steady-state motion of incompressible media is usually con- 
sidered. At the same time, polymeric materials cannot be regarded as perfectly incompres- 
sible (see [i, 2]) and, clearly, in the initial stage of extrusion through a spinneret, 
when the exit velocity has not yet reached its steady-state value, volume compression of 
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Fig. i. Region of motion 
and coordinate system. 

the material may occur. From the results of [3] it follows that the volume compression 
may be a cause of instability. This points to the need to take compressibility into account 
in investigating the stability of the process. We have therefore investigated the possibil- 
ity of oscillatory instability and have determined the critical values of the extrusion rate 
and cone angle. 

i. The basic motion, modeling the compaction process in the initial stage of extrusion 
and investigated for stability below, is taken in the form: 

v O = V  r__5___ ; (1) 

Here, U is the constant extrusion rate, which is given on a certain moving spherical sur- 
face (Fig. I), and R is the radius of that surface (U = dR/dt). The surface may be rigid 
(ram extrusion) of free (hydrostatic pressure extrusion). If we introduce a certain small 
conventional distance s where the conical part of the channel ends, then with the chosen 
kinematics the exit velocity will increase with time as v = Us 

It is assumed that the material slides along the channel walls. In principle, this can 
be achieved by using a lubricant or material with a low coefficient of friction at the 
metal-polymer boundary. However, the choice of these kinematics may also be justified in 
other situations. Experimental investigations of the motion in spinneret inlets (see [4]) 
show that in most of the conical channel the streamlines are practically radial (v% ~ Vr), 
and a shear velocity distribution is observed only in a narrow layer near the channel walls. 
Thus, (i) may be regarded as a model of the motion in the main channel, and the surface se- 
parating this zone from the shear layer may be regarded as the boundary. 

The system of equations describing the isothermal motion of a compressible viscoelastic 
medium takes the form: 

09 09 Ovk = O, 
Ot + V~ ~xk + p O& 

O\ Ot + v h  O& ) O& ' 

~u = (Kskh + ~kh) 8u + %j, ( 2 )  

O8~j Oe~j Ovu Ovh = e~j, 

6t + ~ j =  21] e~y-- ehk6~j , 

~aTi,i 
6t 

_ O~ij + vk 
Ot 

OT~! - -  (<%n zkj - -  "%hco~j) + a (eihzky + "r, ikeky), 
axn 

' " 
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Here and in what follows, in all the relations the summation convention is assumed to apply. 

The system of rheological relations (2) can be obtained on the basis of the approach 
developed in [5, 6], where the governing equations were constructed by the methods of the 
thermodynamics of irreversible processes with allowance for the relations between the rever- 
sible, irreversible and total strain rates. This approach leads to rheological equations 
of the type in question if it is assumed that the reversible strains are small as compared 
with the total strains, and that the irreversible volume changes are unimportant. 

The motion (i) corresponds to the solution of system (2) with the uniform density, strain 
and stress distributions p0, e0ik, ~0ik: 

We will investigate the stability of the basic motion (i), (3) with respect to small 
perturbations. In Eqs. (2) we go over to the new set of independent variables t, Yi = xi/R: 

0 1 0 0 0 U 0 

Ox~ R Oyi Ot Ot R ayh 

and represent the solutions of system (2) in the form: 

v~-- Uy~ + u~; p = p o +  ~ ;  e~ = ~ i  + E~j, 

where ui, ~, and Eij are regarded as functions of the variables Yi and t. After lineariza- 
tion with respect to the perturbations, using (3) we arrive at the equations 

PoR~ ( au~ u ) K aE~h ~ a2uh 1 avh~ ( 4 )  

R 3 - \  at + ~ - - u ~  = R Oy~ + - - 4  . . . .  , R 2 Oy~Oyh R Oyk 

eel, 2v / o.i o.,  ], 
ot  + - + 2R 3 \ Oy: Og~ / (5) 

" , - - ~ u  = + ( 6 )  
at R , R -  k Oyj Og~ 3 Ovh 

The solutions of Eqs. (4)-(6) must satisfy the boundary conditions on the surface of 
the cone and on the surface r = R(t). In what follows we will use the dimensionless radial 
coordinate $ = r/R and the spherical angular coordinates ~ and ~0. The condition of zero 
flow across the boundary of the cone gives 

Uq == 0 when 1~ = O. ( 7 )  

On the surface r = R(~ = I) one of the following two conditions is given: 

ur=Owhen ~= I, (8) 

er~ = er~ = 0when ~ = ], (9) 

where (8) is used in the case of a rigid boundary surface (ram extrusion) and (9) for a 
free surface (hydrostatic compression). Condition (9), which expresses the absence of shear 
stresses on the disturbed interface, is obtained by expanding all the quantities in a series 
in the surface perturbations near $ = i with subsequent linearization. 

The system (4)-(6) can be reduced to three equations for the quantities 8Uk/Sy k, Ekk 
and 82~ki/3YkSYi . For this it is necessary to carry out convolution operations on Eq. (4) 
with the operator 8/8Yi, on Eq. (6) with the operator 82/SyiSYj, and in expression (5) with 
respect to the tensor incides. Going over to the dimensionless variables T, G, Q, and S 
defined below, we obtain 

Re, 1 auk 1 a z ~  
T . . . .  G = - -  ; Q = E k k ;  S = - -  , ( 1 0 )  

R U Ovk 9o Uz OyhOy~ 

OG G D M I 
-- = A Q +  A G - - - -  S ,  ( 1 1 )  

OT T T ~ T a T ~ 
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OQ 2Q = - - T G ,  
OT T 

T_.._.7 -S ( OSoT 2aS = 34 B 

D -=- K , M ~ B ~ W ~ tUI 
pou ~ poRo IUI OoRo IUl' Ro 

(12) 

(13) 

(14) 

The solutions of Eqs. (11)-(13) are represented in the form of a superposition of solu- 
tions with separable variables: 

G=~gt" ' l~( t ) . f~ '~  O, q0; A/n '~ ~2 ~(~,l) : - -  '~n, t l  ; 

,,,t ( 1 5 )  
q = ~ ,  q(",') (t). /" , ' )  (~, e,  ~); s = ~s ( " . ' ) ( t ) . f ( " , ' ) (~ ,  ~, ,~). 

n,l n,l 

Using the known expressions for the eigenfunctions of the Laplace operator f(n,s and the 
vector relation between f(n,s and the velocity components ui(n,s 

/n,O = ~-l/2jt+,/~ (hn,z~) Yt 0% r u~n 0 = g(,,O O[(n,t) (16) 
h~,l Oyi ' 

we can determine the values of hn, s from the boundary conditions. The two variants of the 
boundary condition for ~ = 1 (8), (9) give two variants of the relation determining hn, s 
for given s 

h m  ; + l  /2  ( h )  - T Jl.Ocl /2 (h) = 0 (ram extrusion) (17) 

3 
h J;+1~2 (h) - -  - -2- ,/'.'+1/2 (h) ---- 0 (hydrostatic compression). ( 18) Z 

The no-flow boundary condition (7) gives the relation determining the possible values of s 

d~n/(c~ ~) -~ 0 when ~ : O .  (19) 
d# 

As a result of the fact that the region of variation of the coordinate % does not contain 
the point O = ~, the index s is not necessarily an integer and may take arbitrary values 
[ 7 ] .  

The equations for the amplitudes of the perturbations g(n,s q(~,s163 
can be obtained from (11)-(13) by means of the substitutions: G + g(n,s Q § q(n,s S 
s(n,s A + - h2n,i. We will consider the solutions of these equations on the assumption 
that D >> 1 (large bulk moduli, see (14)), which is well satisfied in the case of polymeric 
materials [i, 2]. The solutions can be found by the averaging method [8]. Considering 
that the solutions are oscillatory with frequency ~ v~ (see below), we go over from the 
quantities q(n,s and s(n,s to the variables z 2 and z~, which are of the same order as the 
variable g(n,s = zl: from Eq. (ii) it is clear that s(n,s ~ dg(n,s ~ V~g(n,s q(n,s 

g(n,s Introducing the "fast" time 8, we obtain (in what follows we have dropped the 
indices from hn,s s(n,l) 

= ] / D T ,  z l  = g<"' 0 ,  z~ =: q(n, 0 ] / 5 ,  za = 
-I/'D" (20) 

dzl h z 1 ( 1  Mh ~ ) 
d[~ T ~ z2 -5 - - ~  za = o~ . Zl, - -  T T ~ . ( 2 1 )  

2 dz__&_~ -5 Tzl = ~ zz, (22) 
d[~ T 

dZad~ ~Nh2 ( 2a 1 ) -- ~ z l  = a z3; ( 2 3 )  T WT 2 
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1 4 B 
== ----~--~, N -  (24) VD 3 D~ ~ 

Here, the variable T = =/~ plays the part of "slow" time [9]. 

In expressions (21)-(23) it is assumed that W ~ i, M ~ I, N ~ i. Although from the last 
estimate there follows B ~ D (see (24)), i.e., B ~ ~, the dilatational viscosity must be 
taken into account. The results presented below show that even when ~ ~ ~ the dilatational 
and shear viscosities have an equally important influence on the development of instability 
of the type in question. However, when ~ ~ n (B ~ M ~ I, the calculations are not given) 
the dilatational viscosity plays a decisive role. 

In order to employ the averaging method the system (21)-(23) must be reduced to stan- 
dard form [8]. The conversion formulas are determined by the form of the "generating" solu- 
tion (the solution of the system (21)-(23) for = = 0 and T = const): 

T C (1]) 
z~ = A ([~) s i n ,  ([~), z,  = -h-- A ([3) c o s ,  ([~) + h~ 

A ( )cos, + c = ( T.h" + 
(25) 

Averaging the right sides of the equations in standard form with respect to the variable 
and solving the averaged equations, we obtain 

A=AoTOOxpr    '(2~ ')] 
t 4T 2 + - " ~  ~--~ T ~ W-T~ dT , 

(26) 

%. 

The conditions of growth of a given harmonic of the perturbation spectrum can be found 
from the inequality dA/dT > 0, which, applied to (26), gives for T = I (the initial stage 
of the process): 2haM(l + N) < I - N(I - 4a + 2/W). Using expressions (24) and (14), we 
can write this relation as an inequality for the velocity [U[ (the quantity N does not 
contain U): 

IUl> 2~(N+ 1) h2 + NRo 
poRo[1---N(l--4a)] ~[1--N(1--4a)] (27) 

The instability condition (growth of at least one harmonic of the spectrum) is obtained 
from (27) when h = hmi n. 

The quantity hmi n is defined as the root of Eq. (17) or (18) least in absolute value 
for the least s satisfying condition (19). The set of values of s permitted by relation 
(19) depends on the quantity O. For simplicity, we will do the calculations for the case 
m = 0 (axisymmetric perturbations). Using tables of zeros of the spherical functions Ps 
[i0], it is possible for given O to determine the least value of s satisfying (19), and 
for that s find the first root of Eq. (17) or (18). Then, from relation (27) we determine 
the value of the velocity [U[ critical for instability. Since the least ~ increases as 0 
decreases, and the roots of (17) and (18) increase with ~, the critical value of the ex- 
trusion rate increases with decrease in the cone angle. Conversely, it is possible to de- 
termine the critical value of the angle 0 for a given IU[, by finding h = from (27) and de- 
termining the corresponding t and O. 

The results of the calculations are presented in Fig. 2, where each curve, correspond- 
ing to a certain value of X, divides the plane (O, [U[) into regions of stability and in- 
stability (region of stability to the left of the curve). The curves in Fig. 2 were ob- 
tained for the case of ram extrusion (h is determined from Eq. (17)) for a = -I (upper 
convective derivative in the rheological equation) and the following values of the parame- 
ters: P0 = 103 kg/ms, R0 = 0.i m, ~ = 0.i Pa.sec, ~/K = 0.075 sec. 

It is possible to obtain a simple expression for the dependence of the critical extru- 
sion rate on the cone angle using asymptotic expressions [I0, ii] for the roots of (17), 
(19): 
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Fig. 2. Critical cone angle 
8 (deg) as a function of the 
extrusion rate IUI (m/sec): 
I) I = 0.75 sec; 2) i; 3) 5. 

I _  5n ht~= l +  +0,8086 l 
l + 2 40 ' ' (28)  

Although Eqs. (28)  were o b t a i n e d  on t h e  assumpt ion  t h a t  s ~ 1, t h e y  g ive  s and hs 1 q u i t e  
a c c u r a t e l y  f o r  a l l  v a l u e s  o f  0 of  p r a c t i c a l  impor tance .  S t a r t i n g  from s > 5 (0 < 40 ~ cone 
ang le  ~ 80~  t h e  d i f f e r e n c e  i s  no t  more than  2%. By combining e x p r e s s i o n s  (27 ) -and  (28) 
it is possible to obtain a relation for the critical velocity. 

Our investigations show that the initial stage of the process of extruding a viscoelas- 
tic material through a die or spinneret may be unstable. The oscillating nature of the in- 
stability is associated with the bulk elasticity of the material (see (26), (14)), and the 
growth of the oscillations is possible only under conditions of compaction of the material, 
when the velocity decreases in the direction of motion. Thus, the instability described 
does not have analogs among the various modes of instability typical of incompressible 
materials (see review [12]). For instability to occur it is not necessary to have a high 
degree Of volume compression - if the extrusion rate is sufficient, the perturbations may 
grow from the very outset of compression. It should be noted, however, that the time 
during which motion with compaction takes place depends on the degree of compressibility 
(in the incompressible limit the corresponding time interval tends to zero). For low deg- 
rees of compressibility this time may be insufficient for instability to develop. 

Unstable motion during the process of solid-phase polymer extrusion was observed in 
the experiments reported in [13]. Defects in the extrudate were noted after a certain 
threshold ram velocity had been reached (defects of various types were observed, including 
spiral defects corresponding to m ~ 0). As the extrusion temperature was lowered, the 
threshold velocity fell, which, generally speaking, is in accordance with (27). In fact, 
a fall in temperature leads to an increase in the relaxation time and shear viscosity, so 
that N remains more or less constant, while the second term in (27) decreases. As noted 
by the authors of [13], the instability effects were not associated with friction at the 
boundary - the use of lubricants and materials with a low coefficient of friction at the 
metal-polymer boundary did not have a very significant effect on the defect formation 
patterns. All this makes it possible to assume that some of the modes of instability ob- 
served in [13] can be related to the type investigated in our study. 

NOTATION 

V~ v~ and v~ velocity components of the basic motion in the spherical coordinate 
system; r, %, and ~, spherical coordinates; R(t), distance to the ram or free surface; U, 
extrusion rate (velocity of ram or free surface); s a small conventional distance from 
the apex of the cone to the tip of the die (spinneret) cone; p, density; v i, components of 
the total (basic motion plus perturbations) velocity in the Cartesian coordinate system; 
xi, Cartesian coordinates; t, time; oij, components of the stress tensor; Tij, deviatoric 
components of the stress tensor; eij, Almansi strain tensor components; eij, strain rate 
tensor components; 6i., Kronecker delta; 6a/6t, Oldroyd derivative; a, derivative type in- 

3 
dex (a = 0, -i); ~ij, rotation tensor components; K, bulk modulus; ~, dilatational visco- 
sity coefficient; q, shear viscosity coefficient; l, relaxation time; T~ e~ and p0, 
deviatoric stresses, strains and density for the basic motion; P0 and R 0, density and the 
distance to the ram at the initial instant; ui, velocity perturbation components; #, den- 
sity perturbation; Eij, perturbations of the strain tensor components; ~ = r/R, dimension- 
less radial coordinate that plays the part of Lagrangian coordinate for the basic motion; 
8, cone half-angle; T = R0/R, a dimensionless independent variable that increases monotoni- 
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cally with time; G, Q, and S, dimensionless variables that determine the velocity, strain 
and shear stress perturbations respectively; D, M, B, and W, dimensionless parameters that 
determine the values of the bulk elasticity, the dilatational viscosity, the shear visco- 
sity, and the relaxation time respectively; A = a2/ay2k, Laplacian; f(ns eigenfunctions 
of the Laplacian; hn,s eigenvalues of the Laplacian determined from the boundary conditions 
(n is an index which numbers the values of h in increasing order, s is the spherical har- 
monic index); Jr(z), Bessel function of the first kind; Ys @), surface spherical harmo- 
nic; Ps ~), an associated Legendre function of the first kind; g(n,s q(n,s s(n,s 
time parts of the harmonics of the G, Q, S, value spectrum; zl, z2, and z3, auxiliary dimen- 
sionless parameter; A, amplitude of the velocity perturbation fluctuations; ~, phase of the 
fluctuations; A 0 and ~0, initial values of the amplitude and phase; C(8), a variable corres- 
ponding to a monotonic mode; ~(T), a variable that plays the part of frequency in the "gen- 
erating" solution. 
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RELAXATION OF CONCENTRATION INHOMOGENEITIES 

IN NONIDEAL SOLUTIONS 

P. P. Bezverkhii, M. Ya. Golota, 
V. S. Gurvich, and E. V. Matizen 

UDC 532.72 

Numerical solutions of the nonlinear diffusion equation are obtained for non- 
ideal solutions satisfying an equation of state of the Van der Waals-Landau 
average field type. The results are compared with experiment. 

The study of the processes of relaxation of concentration inhomogeneities in binary 
gaseous solutions in the region of states in which significant nonideality has a pronounced 
influence on the diffusion owing to the proximity of the critical line of the mixture is a 
complex problem involving the nonlinearity of the equations describing these processes. Par- 
ticularly difficult to solve experimentally is the inverse problem of regenerating the inter- 
diffusion coefficient from data on the dependence of the concentration on time and the co- 
ordinates. Further obstacles arise as a result of the limited accuracy of measurement of 
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